Tips for fitting PTZ ### Version 1.1 General guidance to installing and fitting PTZ equipment. Copyright System Q ltd. 2006 # As with any electric or electronic installation you need to get the basics correct and ALWAYS READ the instructions!!!!! - 1. Please read the operation manual carefully before installing and operating any product. - 2. Check the power requirements of the domes and get them correct. - 3. During the course of transportation, storage and installation, the product should be handled with care avoiding vibration and any weight pressure, which may cause damage to the sophisticated optical and electronic equipment inside the machine. - 4. Do not attempt to disassemble the camera. In order to prevent electric shock, do not remove screws or covers. There are no user-serviceable parts inside the camera. - 5. Always use and stick to current electrical safety standards to install and use the dome. Use a correctly rated power supply. The RS-485 and video signal cables should be kept way from other high voltage equipment such as mains cables and especially fluorescent lights. Using an anti-surge protection device is recommended to prevent damage to the domes from lightning and mains surges. Damage to domes by lightning or mains voltage surges is not covered under the domes warranty. - 6. Do not operate in areas exceeding the stipulated limitations concerning temperature, humidity and power supply. - 7. Do not aim the camera directly towards the sun or an extreme light source whether it is switched on or not. Do not let the camera focus on bright and stationery objects for a long time. Doing either of these may damage the camera. - 8. Do not use strong detergents to clean the main body of the camera as these may damage the dome cover or paintwork. Wipe dirt with dry cloth. If needed a *mild* detergent can be used. - 9. Operate the dome camera with great care to avoid shock or vibration. If operated incorrectly, the Dome could be damaged. - 10. Ensure the dome is not dropped. Never mount the unit on a ceiling that cannot support its weight. - 11. If necessary, use a commercial lens cleaning paper to clear the lens windows. Gently wipe the lens window until clean. ### Getting your PTZ dome up and running! If you want to look like the professional CCTV installer you are act like a professional!! Connect up the PTZ dome and your control equipment on a workbench or kitchen table before the actual site installation and CHECK YOU KNOW HOW TO INSTALL IT CORRECTLY!!!!!!!!!!!!!!!. By doing this you can set-up any DIP switches, adjust the camera, and learn about how it operates before taking it to site. This will save you hours of time on-site trying to work out why a particular item doesn't function as you expected it to. There is nothing worse than installing something and then having to take it down to see how to get it working!! Do the learning curve in the comfort of your own premises!!!! So, learn all about it with out the pressure of your customer breathing down you neck on site. # Do you KNOW how to install PTZ equipment that is controlled by RS485 data signals? If not please read the following introduction to PTZ >>>.... # Overview- introduction to fitting PTZ equipment Generally speaking, PTZ Domes requires four things; - 1- They require a power supply and a cable to supply this power to the dome. Often, external domes are 24V A.C but some mini pan and tilt domes are 12V. - 2- They require a cable to get the video signal back to the monitor or recording device. - 3- They require a cable to transmit the "RS485 control signal" from the keypad or DVR to tell the dome to pan, tilt and zoom etc. - 4- They require something to control them, either a keypad or a DVR. The following diagram indicates the basic cable requirements for a PTZ system. You can get "composite" cables that will carry both the power and the video signals and this has the benefit of combining two of the three cables into one. You may choose to power the dome locally to it, so you may only need to get the video signal back from the dome and the RS485 control signals to it. If this is the case you may choose to use a pair of BALUNS. By using baluns you can send the video signal and control signal down the same CAT5 cable just using different cores for each signal. The control signal (RS485) is nearly always sent along a "twisted-pair" type cable. The twists in the cable help prevent interference affecting the data signal by "shielding" it. Many installation companies use a CAT5 type or similar cable to run out to the domes to carry the data signal. If you are considering using baluns please note - DVR's tend to require very good video signals to function correctly and "passive baluns" can loose some signal strength over the 50 meter mark so try to restrict the use of passive baluns to below 50 meter cable runs when using them with DVRs. Above this distance perhaps consider an active balun. Active baluns require power, passive baluns do not. You can mix and match how you wire up your PTZ installation and the following general diagram gives you a guideline about how to do it. Remember this is a GUIDE and is not an instruction what to fit! Many installation companies can get the power and video signal correct, but struggle with the control of the dome using the keypad or DVR using the RS485 data. The key to successfully installing the data cabling to the dome is to get the basics right. Use a quality data cable such as CAT5 (never use just a standard untwisted cable such as alarm cable for the RS485 signal). Also, you must follow the RS485 wiring convention; the following section explains this; # RS485 Wiring methods & Tips >>>> #### 1. Characteristics of RS485 As specified by RS485 standards, RS485 is a half-duplex data transmission type with characteristic impedance of $120\,\Omega$. The maximum load capacity is 32 units (domes, keyboards and DVRs). #### 2. Transmission distances of RS485 Signals using CAT5 or similar cables Selecting a CAT5 or similar sized twisted pair data transmission cable, the maximum theoretical transmitting distances are as follows: | Baud Rate | Maximum Transmitting Distance | |--------------------|-------------------------------| | 2400 Bps (PELCO-D) | 1500m | | 4800 bps | 1000m | | 9600 bps | 600m | **PLEASE NOTE** - Using inferior cables, or installing the dome in an environment with strong electromagnetic interference, or connecting a lot of PTZ domes to the same cable carrying the RS485 signal will reduce the maximum transmitting distance. #### 3. RS485 Connection methods #### METHOD 1 – DAISY CHAIN CONNECTION. The general RS485 standard recommends a "daisy chain" connection of equipment that is to be controlled. This means that the control cable is looped out of the one dome to the next dome and so on. The last dome in the line is then fitted with what is known as a "termination resistor". This has a value of $120\,\Omega$. The resistor is built in the PTZ domes and is activated by moving the appropriate "jumper" in the dome. The keyboard itself generally has a built-in $120\,\Omega$ resistor. These termination resistors help make the signal more stable and give the system better reliability so the domes function as expected. A common mistake installer's make is not making sure the $120\,\Omega$ resistor is switched ON in the LAST dome. Also installers often select the resistor to ON in another dome in the chain, these errors will make control of the dome unpredictable. A simplified Daisy chain is shown below; This first diagram shows the cables looping in one dome and out of another; Standard Daisy-Chain connection for the RS485 PTZ control signal (just the last dome only has the $120\,\Omega$ resistor set to on, the first device is the keyboard and has the $120\,\Omega$ built in as default) Daisy-Chain connection WITH SHORT SPURS for the RS485 PTZ control signal (one main radial with very short spurs to each dome off it, keeping the spurs to less than 10 meters) #### STAR method of connection. In some circumstances you may need to adopt a star configuration for practical purposes. For instance, all the domes may be so scattered on a large site that running out separate spurs to each dome in a "STAR" array is the only practical solution. So how do you do this in practice? The termination resistors must be connected to the two domes that are farthest away from each other, such as domes 3 and 5 in the following "Star diagram". Note that all the other domes do not have the 120ohm resistor connected. The resistors are already fitted to the domes PCB but by default are not in circuit. To put them in circuit you must move the small "jumper" as previously indicated. As the star configuration is not in conformity with the requirements of RS485 standards, problems such as signal reflections may arise, especially when there are long cable connections. The results are that control signals are decreased and the dome may not respond to, or just responds intermittently to the controller. If your STAR circuit is not too extensive with each spur in the region of 20-50 meters you can expect quite good reliable performance using this technique. If you experience any problems though, there is a RS485 distribution box available CODE PT750 to help overcome any problems. #### The Star circuit for wiring PTZ's. The two furthest domes need the 1200hm resistors enabling, by moving the "Jumper" *In this example it's domes 3 &5*. #### Overcoming RS485 data loss using an RS485 distributor In the real world not everything always works exactly as it's expected to! RS485 data signals that control the domes' movements are tiny signals that can get corrupted for many reasons. Poor cable quality, not using a PAIR of cores from a CAT5 but using one core from TWO separate pairs, running the CAT5 cable near mains equipment such as florescent lighting all will have a detrimental effect on the signal. These are things that you can correct with good installation practices. Where you wish to run several separate CAT5 cables out to send the RS485 data signal out to the domes you are in effect correcting the STAR method of RS485 data distribution. As previously mentioned the problem with the Star method is that it is not actually designed for RS485 but generally works okay if you follow the previous notes on getting the 1200hm resistor setting right, as per the previous notes. One way that takes the guesswork out of installing the Star method is to utilise an RS485 distributor. This has the advantage that the RS485 signal is correctly distributed to the domes so that they behave as expected. You can create up to 4 spurs to the domes and put up to 4 domes on each spur. Just like the Daisy chain method the end dome on each spur needs to have the 1200hm resistor enabled. Although the RS485 distributor is a small additional expense, it takes some of the guess work out of the installation design and gives a more flexible approach to cabling which itself can save time and money on the installation. Not forgetting you get more predictable results! The RS485 distributor (PTZ750) amplifies the RS485 control signal and distributes it evenly to 4 separate spurs, each spur can have up to 4 domes. This means that you could theoretically have up to 4 individual spurs of over 1000mtrs each to control up to 16 PTZ domes in total. Ideally you would put just one dome on each spur from the PTZ750 but up to 4 domes is generally acceptable. The following diagram shows a typical use of the PTZ750 RS485 distributor. In the following example and diagram, domes 1,4,5 and 7 are at the end of each spur and therefore require the 120ohm resistor enabling by moving the jumper setting within the domes. Domes 2,3 and 6 are all "midway" in each spur and do not need the 120ohm resistor and can be left as default. The PTZ750 itself has four 120ohm resistors built in as shown and you do not have to do anything with the PTZ750 as the resistors are permanently connected within it. (Diagram showing how to use an RS485 distributor to improve PTZ control reliability) Please note if you have the PTZ750 located within 5mtrs of the keypad or DVR you can connect up to 3 of them in parallel. # **Lightning Proof and Surge Signal Proof** PTZ domes are expensive items and lightning can kill them!! It is possible to take some preventative measures to help reduce the possibilities of lightning damage; - Keep the communication cables at least 50 meters away from high voltage equipment or cables. - Make outdoor cable laying-out under eaves as possible as you can. - In open area shield cables in steel tube and conduct a single point ground to the tube. Trolley wire is forbidden in such circumstances. - In strong thunderstorm or high faradic zone (such as high voltage transformer substation), extra strong lightning proof equipment must be installed. - Take the building lightning proof requirements into account to design the lightning proof and grounding of outdoor equipment and cable laying-out in accordance with the national and industrial standards. - The system must be grounded with equal potentials. The earth ground connection must satisfy the anti-interference and electrical safety requirements and must not short circuited with high voltage electricity circuit. When the system is grounded separately, the resistance of down conductor should be $\leq 4 \Omega$ and the sectional area of down conductor should be $\leq 25 \text{mm} 2$ (refer to Picture 36). "D" should not exceed 7m.